Phytoremediation describes the treatment of environmental problems (bioremediation) through the use of plants which mitigate the environmental problem without the need to excavate the contaminant material and dispose of it elsewhere.
Hyperaccumulators table – 1 : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn
Hyperaccumulators table – 2 : Nickel
Hyperaccumulators table – 3 : Radionuclides (Cd, Cs, Co, Pu, Ra, Sr, U), Hydrocarbures, Organic Solvents.
Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level, E. Kazakou, P. G. Dimitrakopoulos, A. J. M. Baker, R. D. Reeves, and A. Y. Troumbis, Biological Reviews 83(4):495 - 508 (Sep 2008).
Using Arabidopsis to explore zinc tolerance and hyperaccumulation, Roosens NH, Willems G, Saumitou-Laprade P., Trends Plant Sci. 13(5):208-15 (2008 May).
Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation, Pauwels M, Willems G, Roosens N, Frérot H, Saumitou-Laprade P., Mol Ecol. 17(1):108-19 (2008 Jan).
Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system, Milner MJ, Kochian LV., Ann Bot (Lond). 102(1):3-13 (2008 Jul).
Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines, Klein MA, Sekimoto H, Milner MJ, Kochian LV., Plant Physiol. 147(4):2006-16 (2008 Aug).
Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage, Mirete S, de Figueras CG, González-Pastor JE., Appl Environ Microbiol. 73(19):6001-11 (2007 Oct).
Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies, Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL, J Environ Qual. 36(5):1429-43 (2007 Sep-Oct).
Perspectives of bacterial ACC deaminase in phytoremediation, Arshad M, Saleem M, Hussain S., Trends Biotechnol. 25(8):356-62 (2007 Aug).
A quantitative trait loci analysis of zinc hyperaccumulation in Arabidopsis halleri, Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR., New Phytol. 174(3):580-90 (2007).
Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ., J Exp Bot. 58(7):1717-28 (2007).
Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation, Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR., Mol Ecol. 15(10):3045-59 (2006 Sep).
Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae, Basic N, Besnard G., J Plant Res. 119(5):479-87 (2006 Sep).
Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri, Talke IN, Hanikenne M, Krämer U., Plant Physiol. 142(1):148-67 (2006 Sep).
The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis, Rigola D, Fiers M, Vurro E, Aarts MG., New Phytol. 170(4):753-65 (2006).
A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes, Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR., New Phytol. 170(2):239-60 (2006).
Comparative transcriptomics -- model species lead the way, van de Mortel JE, Aarts MG., New Phytol. 170(2):199-201 (2006).
Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation, Assunção AG, Pieper B, Vromans J, Lindhout P, Aarts MG, Schat H., New Phytol. 170(1):21-32 (2006).
High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger, Elbaz B, Shoshani-Knaani N, David-Assael O, Mizrachy-Dagri T, Mizrahi K, Saul H, Brook E, Berezin I, Shaul O., Plant Cell Environ. 29(6):1179-90 (2006 June).
The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis, Rigola D, Fiers M, Vurro E, Aarts MG, New Phytol. 170(4):753-65 (2006).
QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens, Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MG, Schat H., Theor Appl Genet. 113(5):907-20 (Sep 2006).
Phytoremediation: novel approaches to cleaning up polluted soils, Krämer U., Curr Opin Biotechnol. 16(2):133-41 (2005 April).
Using hyperaccumulator plants to phytoextract soil Ni and Cd, Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ, Z Naturforsch 60(3-4):190-8 (2005 Mar-Apr).
Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase, Papoyan A, Kochian LV., Plant Physiol. 136(3):3814-23 (2004 Nov).
Thursday, April 30, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment